
le-git-imate: Towards Verifiable Web-based Git Repositories
Hammad Afzali

New Jersey Institute of

Technology

Department of Computer

Science

ha285@njit.edu

Santiago Torres-Arias

New York University

Tandon School of

Engineering

santiago@nyu.edu

Reza Curtmola

New Jersey Institute of

Technology

Department of Computer

Science

crix@njit.edu

Justin Cappos

New York University

Tandon School of

Engineering

jcappos@nyu.edu

ABSTRACT
Web-based Git hosting services such as GitHub and GitLab are pop-

ular choices to manage and interact with Git repositories. However,

they lack an important security feature — the ability to sign Git

commits. Users instruct the server to perform repository operations

on their behalf and have to trust that the server will execute their

requests faithfully. Such trust may be unwarranted though because

a malicious or a compromised server may execute the requested

actions in an incorrect manner, leading to a different state of the

repository than what the user intended.

In this paper, we show a range of high-impact attacks that can be

executed stealthily when developers use the web UI of a Git hosting

service to perform common actions such as editing files or merging

branches. We then propose le-git-imate, a defense against these
attacks which provides security guarantees comparable and compat-

ible with Git’s standard commit signing mechanism. We implement

le-git-imate as a Chrome browser extension. le-git-imate does not
require changes on the server side and can thus be used immediately.

It also preserves current workflows used in Github/GitLab and does

not require the user to leave the browser, and it allows anyone to

verify that the server’s actions faithfully follow the user’s requested

actions. Moreover, experimental evaluation using the browser ex-

tension shows that le-git-imate has comparable performance with

Git’s standard commit signature mechanism. With our solution

in place, users can take advantage of GitHub/GitLab’s web-based

features without sacrificing security, thus paving the way towards

verifiable web-based Git repositories.

KEYWORDS
GitHub; commit signature; browser extension; verification record

ACM Reference Format:
Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos.

2018. le-git-imate: Towards Verifiable Web-based Git Repositories. In ASIA
CCS ’18: 2018 ACM Asia Conference on Computer and Communications Secu-
rity, June 4–8, 2018, Incheon, Republic of Korea. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3196494.3196523

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00

https://doi.org/10.1145/3196494.3196523

1 INTRODUCTION
Web-based Git repository hosting services such as GitHub [9], Git-

Lab [15], Bitbucket [3], Sourceforge [28], Assembla [2], Rhode-

Code [26], and many others, have become some of the most used

platforms to interact with Git repositories due to their rich feature-

set and their ease of use. Indeed, GitHub hosts over 67 million

repositories [31] which represents a growth of more than 500%

since 2013 [30]. These platforms allow users to make changes to

a remote Git repository through a web-based UI, i.e., by using a

web browser, and they comprise a substantial percentage of the

changes made to Git repositories: 44 of the top 50 most starred

GitHub projects include web UI commits and an average of 24.4%

of all commits per project are done through the web UI. For some

of these highly popular projects, web UI commits are actually used

more often than using the traditional Git command line interface

(CLI) tool (e.g., 69.2% of merge commits are done via the web UI)
1
.

Unfortunately, this ease of use comes at the cost of relinquishing

the ability to perform Git operations using local, trusted software,

including Git commit signing. Instead, a remote party (the hosting

server) is instructed to perform actions for the client. Given that

the server performs most of the operations on behalf of the user,

it cannot cryptographically sign information without requiring

users to share their private keys. Effectively, since GitHub does not

support user commit signing, those who use the web UI give up

the ability to sign their own commits, and must rely completely on

the server.

However, trusting a web-based Git hosting service to faithfully

perform those actions may be unwarranted. A malicious or a com-

promised server can instead execute the requested actions in an

incorrect manner and change the contents of the repository. Since

Git repositories and other version control system repositories rep-

resent increasingly appealing targets, they have been subjected

historically to such attacks [22, 39, 41, 42, 45, 56, 59, 60], with vary-

ing consequences such as the introduction of backdoors in code

or the removal of security patches. Similar attacks are likely to

occur again in the future, since vulnerabilities may remain undis-

covered for a prolonged amount of time and websites may be slow

in patching them [32].

For example, a user interacting with a GitHub web UI to create

a file in the repository can trigger a post-commit hook that adds

backdoored code on the same file on the server-side. To introduce

such a backdoor, an unscrupulous server manipulates the submitted

file and adds it to the newly-created commit object. As a result,

1
These statistics refer to commits after June 1, 2016, when GitHub started to use the

noreply@github.com committer email for web UI commits, thus providing us with

the ability to differentiate between web UI commits and other commits.

https://doi.org/10.1145/3196494.3196523
https://doi.org/10.1145/3196494.3196523

from that moment on, the Git repository will contain malicious

backdoor code that could propagate to future releases.

To counter this, we propose le-git-imate, a defense that seeks to
incorporate the security offered by signed commits into Git reposi-

tories that are managed via web UI-based services such as GitHub

or GitLab. le-git-imate allows tools to cryptographically verify that

the actions executed by the Git server on behalf of the user are

performed correctly. To do this, le-git-imate computes a verification
record on the user side and then embeds it into the commit object

created by the server. The verification record captures what the user

expects to be included in the commit object. Subsequently, anyone

who clones the repository can traverse the object tree and check if

the server correctly performed the requested actions by comparing

the user-embedded record to the actual commit object created by

the server. With our solution in place, users can take advantage of

GitHub/GitLab’s web-based features without sacrificing security.

We implement le-git-imate as a Chrome browser extension, and

we propose several strategies to compute the verification record.

Our main solution is implemented exclusively in the browser using

JavaScript. Despite the tedious task of re-implementing the commit

functionality of a Git client in JavaScript, this approach achieves

the best portability. It also features optimizations that leverage the

GitHub/GitLab API to download the minimum set of Git objects

needed to compute the verification record. This results in a much

leaner implementation.

In addition to the cryptographic protections suitable for auto-

matic verification, le-git-imate also provides UI validation to pre-

vent an attacker from deceiving a user into performing an unin-

tended action. To do this, the user is presented with information

about their commit that makes it easy to see its impact. This limits

a malicious server’s ability to trick a user into performing actions

they did not intend.

While this paper focuses specifically on le-git-imate’s use with
GitHub and GitLab, our work is applicable to all web-based Git

repository hosting services [2, 3, 9, 15, 26, 28]. Our techniques are

also general enough to be used on web-based code management

tools that can be integrated with a Git repository (such as Gerrit [8]

for code reviews, Jira [20] for project management, or Phabrica-

tor [25] for web-based software development).

In this paper, we make the following contributions:

• We identify new attacks associated with common actions

when using the web UI of a web-based Git hosting service.

In these attacks, the server creates a commit object that

reflects a different repository state than the state intended

by the user. The attacks are stealthy in nature and can have

a significant practical impact, such as removing a security

patch or introducing a backdoor in the code.

• We propose le-git-imate, a client-side defense for Git reposi-
tories that are managed via the web UI, to mitigate the afore-

mentioned attacks. le-git-imate provides security guarantees
comparable and compatible with Git’s standard commit sign-

ing mechanism.

• We implement le-git-imate as a Chrome browser extension

for both GitHub and GitLab. Our implementation has several

desirable features that are paramount for practical adoption:

(1) it does not require any changes on the server side and

Figure 1:A Git repo with two branches, master and feature.

can be used today, (2) it preserves current workflows used

in GitHub/GitLab and does not require the user to leave

the browser, (3) commits generated by le-git-imate can be

checked by existing client tools (such as Git), without any

modifications. le-git-imate also provides the first implemen-

tation of Git’s merge commit functionality in JavaScript,

which is of independent interest.

• We evaluate experimentally the efficiency of our implemen-

tation. Our findings show that, when used with a wide range

of repository sizes, le-git-imate adds minimal overhead and

has comparable performance with Git’s standard commit

signature mechanism.

• We perform a user study that validates the stealthiness of

our attacks against a GitLab server. The study also provides

insights into the usability of our le-git-imate defense.

Together, our contributions enable users to take advantage of

GitHub/GitLab’s web-based features without sacrificing security.

For ease of exposition, throughout the paper we will use GitHub as

a representative web-based Git hosting service, but our attacks and

defenses (including the le-git-imate browser extension) have been
developed and implemented for both GitHub and GitLab.

2 BACKGROUND ON GIT AND GITHUB
GitHub is a web-based hosting service for Git repositories, and its

core functionality relies on a Git implementation. In this section,

we describe several Git and GitHub concepts as background for the

attacks introduced in Sec. 4 and the defenses proposed in Sec. 5.

Readers familiar with Git/GitHub internals may skip this section.

2.1 Git Repository Internals
Git records a project’s version history into a data structure called

a repository. Git uses branches to provide conceptual separation

of different histories. Fig. 1 shows a repository with two branches:

master and feature. As a convention, the master branch contains

production code that has been verified and tested, whereas the

feature branch is used to develop a new feature.

A branch can be merged into another branch to integrate its

changes into the target branch. When a new feature is fully im-

plemented in the feature branch, it may be integrated into the

production code by merging the feature branch into the master
branch. For GitHub, this is often achieved via the pull request mech-

anism, in which a developer sends a request to merge a code update

from her branch into another branch of the project, and the appro-

priate party (e.g., the project maintainer) does the merge.

To work as depicted above, a Git repository uses three types of

objects: commit objects, tree objects, and blob objects. From the

filesystem point of view, each Git object is stored in a file whose

commit <commit object size> tree <hash of tree object>

parent <hash of 1st parent commit object>

[parent <hash of 2nd parent commit object>]

author <author name> <author e-mail> <timestamp> <time zone>

committer <committer name> <committer e-mail> <timestamp> <time zone>

<commit message>

Figure 2: The format of a Git commit object. Bold font de-
notes pre-defined keywords, and angle brackets (i.e., <>) de-
note actual values for those fields. Regular and squash-and-
merge commits have only one parent, whereas merge com-
mits have two (or more) parents depending on how many
branches were merged – we show the case with two parents,
the 2nd parent is enclosed between square brackets.

name is a SHA-1 cryptographic hash over the zlib-compressed

contents of the file. This hash is also used to denote the Git object

(i.e, it is the object’s name).

A blob object is the lowest-level representation of data stored in a

Git repository. At the filesystem level, each blob object corresponds

to a file. A tree object is similar to a filesystem directory: It has “blob”

entries that point to blob objects (similar to a filesystem directory

having filesystem files) and “tree” entries that point to other tree

objects (similar to a filesystem directory having subdirectories).

2.2 Git Signed Commits
Git provides the ability to sign commits: The user who creates a

commit object can include a field that represents a GPG digital

signature over the entire commit object. Later, upon pulling or

merging, Git can be instructed to verify the signed commit objects

using the signer’s public key. This prevents tampering with the

commit object and provides non-repudiation (i.e., a user cannot

claim she did not sign the commit).

However, with a service like GitHub, the server creates a commit

object it cannot sign on behalf of the user, as it lacks the crypto-

graphic key material needed for the signature.

2.3 Commiting via the GitHub Web UI
For every code revision, a new commit object is created reflecting

the state of the repository at that time. This is achieved by including

the name of the tree object that represents the project’s files and

directories at the moment when the commit was done. Each commit

object also contains the names of one (or more) parent commit

objects, which reflect the previous state of the repository. The exact

format of a commit object is described in Fig. 2.

Performing a code revision using GitHub’s web UI will result in

one of three possible types of Git commit objects: regular commit,
merge commit, or squash-and-merge commit objects:

Regular Commit Object. GitHub’s web UI provides the option to

make changes directly into the repository, such as adding new files,

deleting existing files, or modifying existing files. These changes can

then be committed to a branch, which results into a new regular
commit object being added to that branch of the repository. A

new root tree is computed by modifying/adding/deleting the blob

entries relevant to the changeset in the corresponding trees and

propagating these changes up to the root tree. Then, a new commit

is added with the new root tree.

Figure 3: A regular commit on the feature branch.

Figure 4: Merge commit from merging two branches.

For example, consider the repository shown in Fig. 1. Using

GitHub’s webUI in her browser, a user edits a file under the feature
branch and then commits this change. As a result, the GitHub server

will create a new regular commit object C5 that captures the current
state of the feature branch, as shown in Fig. 3.

Merge Commit Object. Consider a GitHub project in which an

owner is responsible for maintaining a branch called “master” and

contributors work on their own branches to make updates to the

code. When a contributor completes the changes she is working

on, she will send a “pull request” to the project owner to merge

the changes from her branch into the master branch. The project
owner will review the suggested changes in the pull request and

will merge them into the master branch. This results in a new

merge commit object as the new head of the master branch. This
new merge commit will contain changes computed using the trees

of the parent of both commits and the tree of the common ancestor(s)
(i.e., the commit from which both branches diverged originally).

For example, in Fig. 4, C5 is the merge commit object obtained

by merging the feature branch into the master branch. In this

case, C5 has two parents, C2 and C4
2
. The C5 object is created by

the GitHub server as a result of the project owner’s action to merge

the pull request via GitHub’s web UI. We note that the objects C3

and C4 from the pull request branch become part of the master
branch after the merge.

Squash-and-Merge Commit Object. Due to space constraints,

we describe this type of object in Appendix A.

3 THREAT MODEL
We assume a threat model in which the attacker’s goal is to remove

code (e.g., a security patch) or introduce malicious code (e.g., a

backdoor) from a software repository that is managed via a web

interface. We assume the attacker is able to tamper with the reposi-

tory (e.g., modify data stored on the Git repository), including any

aspect of the webpages served to clients. This scenario may happen

either directly (e.g., a compromised or malicious Git server), or

2
We note that, in general, Git allows to merge n branches (with n ≥ 2), and the

resulting merge commit object will have n parents. However, at the moment, GitHub’s

web UI does not allow merging more than two branches.

indirectly (e.g., through MITM attacks, such as government attacks

against GitHub [4, 46]). There is evidence that, despite the use of

HTTPS, MITM attacks are still possible due to powerful nation-

state adversaries or due to various protocol flaws [33, 36, 54] Such

an attacker will continue to violate the repository’s integrity as long

as these attacks remain undetected. Since commit objects created

by the server as a result of user web UI actions are not signed by

the user, the attacker may go undetected for a long amount of time.

Thus, rather than relying exclusively on the ability of web services

to remain secure, client-side mechanisms such as the one proposed

in this work can provide an additional layer of protection.

The attacker can read and write any files on a repository that

may contain a mix of signed commits (e.g., created via Git’s CLI tool)
and unsigned commits (e.g., created via the web UI). The integrity of
commits not created via the web UI can be guaranteed only if these

commits are signed by users using Git’s standard commit signing

mechanism. Our solution is independent of whether commits not

created via the web UI are signed or not. We assume the attacker

does not have a developer’s signing key they are willing to use

(such as insiders that do not want to reveal their identity). As such,

the attacker cannot tamper with signed commit objects without

being detected. However, commit objects that are not signed can

be tampered with by the attacker. Since all commits created via the

web UI are not user signed (as is the case with GitHub and GitLab

today
3
), the attacker can tamper with these objects when they are

created, or directly in the repository after they have been created.

Although the attacker can create arbitrary commits even when

users are not interacting with the repository, these commits are

not user-signed and will be detected upon verification. Removing

an existing commit from the end of the commit chain, or entirely

discarding a commit submitted via the web UI are actions that have

a high probability of being noticed by developers. Otherwise, our

solutions cannot detect such attacks, and a more comprehensive

solution should be used, such as a reference state log [57].

We focus on attacks that tamper with commits performed by the
user via the web UI (specific attacks are described in Sec. 4). Such

attacks: (1) are stealthy in nature, since subtle changes bundled

together with a developer’s actions are hard to detect, (2) can be

framed as if the user did something wrong, and (3) can be executed

either by attackers than control the Git server, or byMITM attackers

in conjunction with a user’s web UI actions. Thus, we are mainly

concerned with two attack avenues:

• Direct manipulation of the commit fields, so that the commit

does not reflect the user’s actions through the web UI.

• Tricking the user into committing incorrect data by manipu-

lating the information presented to the user via the web UI.

If not handled appropriately, this attack approach can even

circumvent a defense that performs user commit signatures,

because the user can be deceived into signing incorrect data.

We assume attackers cannot get access to developer keys. Alter-

natively, a malicious developer in control of a developer key may

not want to have an attack attributed to herself and would thus be

unwilling to use this key to sign data they have tampered with.

3
In late October 2017, GitHub started to sign commits made using the GitHub web

interface (as an undocumented feature). However, this only provides a false sense of

security and does not prevent any of the attacks we describe in this paper because

GitHub uses its own private key to sign the commits.

3.1 Security Guarantees
Answering to this threat model, the goal of a successful defensive

system should be to enforce the following:

• SG1: Ensure accurate web UI commits. The commits per-

formed by developers via the web UI should be accurately

reflected in the repository. After each commit, the repository

should be in a state that reflects the developer’s actions.

• SG2: Prevent web UI attacks. Developers should not be

tricked into committing incorrect information based on what

is displayed in the web UI.

• SG3: Prevent modification of committed data: An at-

tacker should not be able to modify data that has been com-

mitted to the repository without being detected.

4 ATTACKS
A benign server will faithfully execute at the Git repository layer the

operation requested by the user at the web UI layer. However, the

user’s web UI actions can be transformed into damaging operations

at the repository layer. In this section, we identify new attacks

that can result from some of the most common actions that can be

performed using GitHub’s web UI. Common to these attacks is the

fact that the server creates a commit object that reflects a different

state of the repository than the state intended by the user. In a

project with multiple files, subtle changes in some of the files may

go unnoticed by the user performing the commit via the web UI. As

a result, anyone cloning or updating the repository will be unaware

they have accessed a repository that was negatively altered.

4.1 Attacks Against Regular Commits

Commit Manipulation Attacks. GitHub’s web UI allows users

to manipulate repository data. The user can add, delete, or modify

files and directories. The user then pushes a “Commit” button to

commit the changes to the repository. As a result, the GitHub server

creates a new commit object that should reflect the current state of

the project’s files. However, the server can instead create a commit

object that corresponds to a different project state, in which files

have been added, deleted, or modified in addition to or instead of

those requested by the user.

The attack is easy to execute, as the server simply has to create

the blob, tree and commit objects that correspond to the incorrect

state of the repository. Nevertheless, the attack’s impact can be

significant. Since the server can arbitrarily manipulate the project’s

files, it can for example, introduce a vulnerability by making a

subtle modification in one of the project’s files.

4.2 Attacks Against Merge Commits
The server can manipulate the various fields of a merge commit

object that it creates. Based on this approach, the following attacks

can be executed. Additional attacks are described in Appendix B.

4.2.1 Incorrect Merge Commit Attacks. The server can create

an incorrect repository state by manipulating the “tree” field of

the merge commit object. The server generates an incorrect list

of blob objects by adding/deleting/modifying project files, then

a tree object that corresponds to this incorrect blob list of blobs,

and finally a merge commit object whose “tree” field refers to the

Figure 5: Incorrect history merge attack.

incorrect tree object. A project owner or developer will not detect

the attack when they clone/update the repository from the server.

For example, in Fig. 4 the feature branch is being merged into

the master branch. Under benign circumstances, the tree object

pointed to by the merge commit C5 object should refer to a set

of blob objects that is the union of the sets of blobs referred to

by the trees in C2 and C4. However, the server can manipulate

the contents of the tree object in C5 to include a different set of

blobs. The server can introduce malicious content by adding a new

blob that does not exist in the trees in C2 or C4. Or, the server can

remove a vulnerability patch by keeping the blob from the master
over the modified blob in the feature branch that contained the

patch. Or it can simply not include blobs that contained the patch.

By manipulating the set of blobs pointed to by the tree object,

the server can make arbitrary changes to the state of the repository

pointed to by the merge commit.

4.2.2 Incorrect HistoryMerge Attacks. The server can also create
an incorrect repository state by manipulating the “parent” fields

of the merge commit object. Instead of using the heads of the two

branches to perform the merge commit, the server can use other

commits as parents of the merge commit.

Consider the initial repository shown in Fig. 1. As shown in

Fig. 4, a correct merging of the “master” and “feature” branches

should result in a merge commit of C2 and C4 (i.e., the heads of
the two branches). However, the server can create the repository

shown in Fig. 5 by merging the head of the master branch with C3

instead of C4. This means only the changes introduced in C3 are

merged. The “parent” fields of C5 are set to point to C2 and C3.

The impact of this attack can be severe. If C3 contained a secu-

rity vulnerability, which was fixed by the developer in C4 before

submitting the pull request, the fix will be omitted from the master

branch after the incorrect merge operation. In a different flavor of

this attack, the malicious server merges the head of the feature
branch (C4) with C1, which is not the head of the master branch,
thus omitting potentially important changes contained in C2.

Unlike the previous attack described in Sec. 4.2.1, the server

does not have to manipulate blob and tree objects, but instead uses

incorrect parents when creating the new merge commit object.

4.3 Web UI-based attacks
The server could display incorrect information in the web UI in

order to trick the user into committing incorrect or malicious data.

Web UI attacks are dangerous because even if a mechanism was in

place to allow the user to sign her commits via the web UI, these

signatures would only legitimize the incorrect data.

Incorrect list of changes. Before doing a merge commit, the user

is presented with a list of changes made in one branch that are about

to be merged into the other branch. The user reviews these changes

and then decides whether or not to perform the merge. The server

may present a list of changes that is incomplete or different than the

real changes. For example, the server may omit code changes that

introduced a vulnerability. Thus, the user may decide to perform

the merge commit based on an incorrect perception of the changes.

Inconsistent repository views.GitHubmay provide inconsistent

views of the repository by displaying certain information in the

web UI and then providing different data when the user queries the

GitHub API to retrieve individual Git objects. This might defeat

defense mechanisms that rely on the GitHub API.

HiddenHTML tags. A web UI-based mechanism to sign the user’s

commits may rely on the information displayed on the merge com-

mit webpage to capture the user’s perception of the operation. For

example, the head commits of the branches being merged may be

extracted based on a syntactic check that looks for HTML tags with

specific identifiers in the webpage source code. Yet, the server may

serve two HTML tags with the same identifier, one of which has

the correct commit value and will be rendered in the user’s browser,

and the other one referring to an incorrect commit that will not be

displayed (i.e., it is a hidden HTML tag). The signing mechanism

will not know which of the two tags should be used, and may end

up merging and signing the incorrect commit – while providing the

user with the perception that the correct commit has been merged.

Malicious scripts. The webpage served by the server in a file edit

operation for a regular commit may contain a malicious JavaScript

script that changes the file content unbeknownst to the user (e.g.,
silently removes a line of code). As a result, the user may unknow-

ingly commit an incorrect version of the file.

5 LE-GIT-IMATE: ADDING VERIFIABILITY TO
WEB-BASED GIT REPOSITORIES

The fundamental reason behind these attacks is that the server is

fully trusted to compute correctly the Git repository objects. Git’s

standard commit signature mechanism provides a solution to this

problem by having the client compute a digital signature over the

commit object and include this signature in the commit object that it

creates. We adopt a similar strategy, namely to embed a verification
record in the commit object, even when the client does not generate

the commit object. In this section, we present le-git-imate, our
defense to address misbehavior by an untrustworthy server.

5.1 Design Goals
We identify a set of design goals that should be satisfied by any

solution that seeks to add verifiability to web-based Git repositories:

(1) The verification record should contain enough information

so that it allows anyone to verify that the server’s actions

faithfully follow the user’s requested actions. More specifi-

cally, the verification record should provide similar security

guarantees as do regular Git signed commits.

(2) For ease of adoption and to ensure that it can be used imme-

diately, the solution should not require server-side changes

(3) The solution should not require the user to leave the browser.

This will minimize the impact on the user’s current experi-

ence with using GitHub.

(4) The solution should preserve as much as possible the current

workflows used in GitHub: to perform a commit operation,

the user prepares the commit and then pushes one button to

commit. In particular, the solution should preserve the ease of

use of GitHub’s web UI and must not increase the complexity

of performing a commit, as this may hurt usability.

(5) The solution must be efficient and must not burden the user

unnecessarily. In particular, the solution should not add sig-

nificant delay, as this will degrade the user experience and it

may hurt usability.

(6) The solution should not break existing workflows for Git

CLI clients: Regular signed commits can still be performed

and verified by Git CLI clients.

5.2 A Strawman Solution
A simple solution can mitigate one of the attacks described in

Sec. 4.2.1, the basic attack against merge operations. By default, Git

uses the recursive strategy with no options for merging branches.

The tree and blob objects corresponding to the merge commit object

are computed using a deterministic algorithm based on the tree and

blob objects of the parents of the merge commit object.

As a result, the correctness of the merge operations performed

by the Git server can be verified. After a user clones/pulls a Git

repository, the user parses the branch of interest, and computes the

expected outcome of all merge opeations based on the parents of

the merge commit objects. The user then compares this expected

outcome with the merge operation performed by the server.

This solution is insufficient because it can only mitigate the sim-

plest attack against a merge commit operation — only when the

recursive merge strategy with no options is used, and the server

includes an incorrect list of blob objects in the merge commit object

by adding/deleting/modifying project files. In particular, this solu-

tion cannot handle any of the other attacks we presented, including

attacks against regular commits, against merge commits based on

incorrect parents or incorrect merge strategy, against squash and

merge operations, or web UI-based attacks. Instead, we need a

solution that provides a comprehensive defense against all these

attacks. In addition, we need to address design and implementation

challenges related to the aforementioned design goals.

5.3 le-git-imate Design
In le-git-imate, the user computes a verification record which con-

tains information from GitHub’s commit webpage as it is rendered

in the user’s browser, and thus represents what the user expects to

be included in the commit object that will be created by the server.

The user embeds this record into the Git repository by including it

in the commit message of the commit object. Subsequently, anyone

who clones the repository can check whether the server performed

the requested actions correctly by traversing the object tree and

comparing the user-embedded record to the actual commit object.

5.3.1 Verification Record. To achieve design goal #1, we are
faced with two challenges. First, the user cannot compute the same

exact commit object computed by the server, because a commit

object contains fields that are non-deterministic in nature, such

as the exact time when the object was created by the server. Our

solution takes advantage that, at the moment when the commit

object is being created by the server, most of the fields in the commit

<original commit message>

[<merge commit strategy>]

<commit size>

<tree hash (hash of tree object)>

<hash of 1st parent commit>

[<hash of 2nd parent commit>]

<author name> <author e-mail>

<committer name> <committer e-mail>

<signature over entire verification record>

Figure 6: The format of the verification record. Fields in be-
tween square brackets ([]) are included only for merge com-
mit objects (merge strategy, and hash of 2nd parent commit).

object are deterministic and can be computed independently by

the user. Second, we need to find a way to embed the verification

record created by the user in the commit object that is created by the

server. We add verifiability to the Git repository by leveraging the

fact that GitHub (as well as any other web-based Git hosting service)

allows the user to supply the commit message for the commit object.

The user creates the verification record and embeds the verification
record into the commitmessage of the commit object. The verification

record contains information that can later be used to attest whether

the server performed correctly each of the actions requested by the

user through the web UI. By including the verification record in

the commit message, our solution also meets design goal #2 – no

changes are needed on the server.

We include the deterministic fields of the commit object into the

verification record, as shown in Fig. 6. For merge commit objects,

we also include the merge commit strategy chosen by the user. All

these fields, except the “tree hash”, are extracted from the GitHub

page where the user performs the commit. As explained later in

Sec. 5.4.2, there are automated and manual checks to mitigate web

UI attacks that attempt to confuse the user by displaying incorrect

information on the commit webpage. The “tree hash” field is com-

puted independently by the user. The user may describe her commit

by providing a message in the GitHub commit webpage. However,

our solution overwrites the user’s message with the verification

record. To preserve the original user’s message, we include it in the

verification record as the “original commit message” field.

5.3.2 Verification Procedure. When a developer retrieves the

repository for the first time (e.g., git clone or git checkout), or
when she pulls changes from the repository (e.g., git pull), she
will check the validity of the retrieved commits by executing the

Verify_Commits procedure, described in Appendix C.

This verification procedure can be implemented as a Git hook

executed after a git clone or after a git pull command. With

this verification procedure, le-git-imate achieves design goal #6.

5.4 le-git-imate Implementation
With the aim of meeting design goals #2, #3 and #4, we imple-

mented our solution as a client-side Chrome browser extension [5].

After preparing the commit, instead of using GitHub’s “commit”

button to commit the change, the user activates the extension via a

“pageAction” button that is active only when visiting GitHub.

The extension is intended to aid the user in creating a verifica-

tion record to embed in the commit message field in GitHub. To

do so, our extension parses the GitHub web UI, obtains the rele-

vant information regarding the current head of the repository (for

regular commits) or a pull-request (for merge commits and squash-

and-merge), and computes — locally — the verification record.

The extension consists of two JavaScript scripts that communi-

cate with each other via the browser’s messaging API as follows:

(1) The content script runs in the user’s browser and can read

and modify the content of the GitHub webpages using the

standard DOM APIs. The content script collects information

about the commit operation from the GitHub commit web-

page and passes this information to the background script.

(2) The background script cannot access the content of GitHub
webpages, but computes the verification record (as described

in Sec. 5.4.1). This script then performs automatic and man-

ual checks to prevent web UI-based attacks (as described in

Sec. 5.4.2). In short, the automatic checks ensure that GitHub

providing consistent repository views between the web UI

and the GitHub API (or any other API used by the Git hosting

provider). For the manual checks, the background script al-

lows the user to check the accuracy of the verification record

by displaying it in a pop-up browser window. If the user

is satisfied, she pushes a button to transfer the verification

record to the content script.

(3) Finally, the content script includes the signed verification

record into the GitHub commitmessage and triggers the com-

mit button on the GitHub webpage. As a result, the signed

verification record is embedded into the GitHub repository

as part of the commit message.

Performing a commit using GitHub’s web UI requires the user

to push one button. With le-git-imate in place, the user can commit

with two clicks while browsing GitHub’s commit webpage (one to

activate the extension, and one to transfer the verification record

in the commit message and trigger GitHub’s commit action). Based

on this design, we argue that le-git-imate achieves design goal #4.
The extension consists of a total of 2,775 lines of Javascript code,

HTML templates and JSON manifests. All operations to compute

commits, signing and verification are done in pure browser-capable

Javascript, which required the re-implementation of some funda-

mental Git functions (such as git-merge-file) in JavaScript-only

versions. The code to fetch arbitrary information and objects from

the repository uses the GitHub API [10], but it could use Git’s pack

protocol [16] to work with other hosting providers just as well.

Previous attempts to implement various Git functions in JavaScript

do not offer the functionality we need [13, 14, 21]. le-git-imate pro-
vides the first implementation of Git’s merge commit in JavaScript,

which is of independent interest. We plan to release the extension

as open source software. Although we implemented le-git-imate as
a Chrome browser extension, it relies purely on JavaScript and can

be instantiated in other browsers with minimal effort.

5.4.1 Computing the “tree hash” field. The extension can popu-

late most of the fields of the verification record by extracting them

from the GitHub commit webpage, except for the “tree hash” field

which needs to be computed independently. We now describe how

to compute this field, which is expected to have the same value as

the “tree” field of the commit object (i.e., the hash of the contents

of the tree object associated with the commit object that is about

to be created by the server).

To compute the tree hash, the background script needs the fol-

lowing information, which is collected by the content script and

passed to the background script:

• for regular commits: branch name on which the commit

is performed, and the following file/directory information

depending on the user’s operation that is being committed:

– add: the name and content of added file(s).

– edit: the name and updated content of edited file(s).

– delete: the name of deleted file(s).

The background script also needs the name of the direc-

tory(es) that might have been affected by the file operation.

• for merge commits and squash-and-merge commits: branch

names of the branches that are being merged.

Basic approach 1. The background script can delegate the compu-

tation of the tree hash field to a script that runs on the user’s local

system (outside the browser). The local script runs a local Git client

that clones the branch(es) involved in the commit from the GitHub

repository into a local repository. The Git client simulates locally

the user’s operation and performs the commit in a local repository,

from where the needed tree hash is then extracted.

Basic approach 2. The previous approach is inefficient for large

repositories, as cloning the entire branch can be time consuming.

To address this drawback, the client could cache the local repository

in between commits. That helps the local Git client to retrieve only

new objects that were created since the previous commit.

Optimized approach for regular commits. Delegating the com-

putation of the tree hash field to a local script is convenient, since

a local Git client will be responsible to compute the necessary Git

objects. However, whenever GitHub’s web UI is preferred for com-

mits, this usually implies that the user does not have a local Git

client. Moreover, assuming that the repository is cached in between

commits is a rather strong assumption.

We explore an approach in which the tree hash is computed

exclusively using JavaScript in the browser. For this, we have re-

implemented in JavaScript the regular merge and the merge commit

functionality of a Git client. As such, the entire verification record

is created exclusively in the browser, without the need to rely on

any software outside of the browser, and without assuming any

locally-cached repository data. Design goal #3 is thus achieved.

Instead of cloning entire branches, we propose an optimized

approach. An analysis of the top 50 most starred GitHub projects

reveals that, for a regular commit performed using GitHub’s web UI,

only one file is edited on average and the median size of the changes

is 57 bytes. For merge commits, the median is 11.8 commits in the

master branch and 2.3 commits in the pull request branch after

the common ancestor of these branches. This raises the possibility

to compute the tree object without retrieving the entire branch.

Instead, we only retrieve a small number of objects and recompute

some of the objects in order to obtain the needed tree object.

Our optimized algorithm leverages the fact that GitHub provides

an API to retrieve individual Git objects (blob, tree, or commit). We

illustrate the optimized algorithm with an example for the object

tree shown in Fig. 7. Assume the user performs an operation on a

Figure 7: An example object tree.

file under Dir2 and then commits. To compute the tree object for

the commit, the background script first retrieves the tree object

TDir2 corresponding to Dir2, followed by the following steps which

depend on the performed operation:

• add a file under Dir2: compute a blob entry for the newly

added file; re-compute TDir2 by adding the blob entry to the

list of entries in TDir2.

• edit a file under Dir2: compute a blob entry for the edited file;

re-compute TDir2 by replacing the blob entry corresponding

to the edited file with the newly computed blob entry.

• delete a file under Dir2: re-compute TDir2 by removing the

blob entry corresponding to the deleted file.

The change in the TDir2 tree object needs to be propagated to

its parent tree object TDir1 (i.e., the tree object corresponding to

Dir1). To do this, the background script retrieves the TDir1 tree

object using GitHub’s API, and then updates it by changing the tree

entry for TDir2 to reflect the new value of TDir2. In general, the

propagation of changes to the parent tree object continues up until

we update the “root” tree object which corresponds to the commit

object that will be created by the server. This “root” tree object is

the tree object that we need to compute.

Unlike the basic approach 1 presented earlier, this optimized

approach proves to be much faster (as shown by our evaluation in

Sec. 6) and does not require a Git client installed on the user’s local

system. We note that all Git objects retrieved through the API are

verified for correctness before being used (they need to either have

a le-git-imate verification record, or a true Git commit signature).

Optimized approach for merge and squash-and-merge com-
mits. We now describe our optimized algorithm to compute the

tree object for merge commits and squash-and-merge commits. The

algorithm is described for the case of merging two branches: the

pull request branch feature is merged into the master branch.

However, it can be extended in a straightforward manner to handle

the merging of multiple branches.

Just like in the optimization for regular commits, we leverage

the GitHub API for retrieving a minimal set of repository objects

that are needed to compute the tree object for the merge commit.

The merge commit is a complex procedure that reconciles the

changes in the two branches into a merge commit object. At a high

level, the tree of the merge commit (i.e. the merge tree) is obtained

by merging the trees of the head commits of the two branches. We

do by initializing the merge tree with the tree of the master branch,
and then add/update/remove its entries to reflect the fact that blobs

were added, modified, or deleted in the feature branch.

To determine the lists of added, modified, and deleted blobs in

the feature branch, we use the following algorithm:

(1) Retrieve the tree of the head commit of the feature branch.

Let L1 be the list of all the blob entries in this tree.

(2) Retrieve the tree of the commit that is the common ancestor

of the two branches. Let L2 be the list of all the blob entries

in this tree.

(3) Given lists L1 and L2:

• if a blob entry exists in both lists (i.e., same blob path), but

the blob has different contents (i.e., different SHA1 hash),
then add the blob entry to the list of modified blobs.

• if a blob entry exists in L1 and does not exist in L2, then

add it to the list of added blobs.

• if a blob entry exists in L2 and does not exist in L1, then

add it to the list of deleted blobs.

Since the entries in the trees retrieved from the GitHub API are

already ordered lexicographically based on the paths of the blobs,

this algorithm can be executed efficiently (execution time is linear

in the number of tree entries).

Having obtained the lists of blobs that were added, modified

and deleted in the feature branch, we add to the merge tree the

entries for the blobs that were added, and remove the entries for

the blobs that were deleted. For modified blobs, we update the

corresponding entries as follows: We use the GitHub API to retrieve

the corresponding blobs from the two branches and then compute

the modified blob via a three-way merge.

We note that changes in the tree of a subdirectory have to be

propagated up to the tree of the subdirectory’s parent directory.

Similarly to our optimization for regular commits, the propagation

of changes to the parent tree object continues up until we update the

“root” tree object which corresponds to the merge commit object

that will be created by the server. This “root” tree object is the tree

object that we need to compute.

5.4.2 Defending Against Web UI attacks. The solutions we pre-
sented rely in part on extracting information from the commit

webpage in order to compute the verification record. To prevent

the web UI attacks described in Sec. 4.3, le-git-imate has additional
checks that retrieve Git objects via the API, and verify their correct-

ness before use based on either a le-git-imate verification record or

a Git commit signature.

To defend against a server that presents an incorrect list of

changes before a merge commit, we use the API to compute inde-

pendently the list of changes based on the heads of the branches

that are being merged. We then compare it with the list of changes

presented in the webpage, and alert the user of any inconsistencies.

To defend against the hidden HTML tags attack, we leverage the

fact that a benign GitHub merge commit webpage should present

only one HTML tag describing the number of commits present in

the branches being merged. If more than one such tag is detected,

we notify the user. We also inform the user about the number of

commits that should be visible in the rendered webpage, and the

user can visually check this information. Assuming there are n
commits, we then check that there are n HTML tags describing a

commit and report any discrepancy to the user as well.

Before embeding the verification record into the commitmessage,

le-git-imate displays in a pop-up window three text areas as follows:

(1) information about parent commit (author, committer, and

creation date), retrieved via the API. This helps the user to

detect if the new commit is added on top of a commit other

than the head of the branch.

(2) for regular commits, the differences between the parent com-

mit (retrieved via the API) and the commit that is about to

be created. This allows the user to detect any inconspicuous

changes made by malicious scripts in the commit webpage.

(3) the verification record. This allows the user to check if the

fields of the verification record match the information dis-

played on GitHub’s commit webpage.

Whereas these checks may not be 100% effective since they are

done manually by the user, they provide important clues to the

user about potential ongoing attacks. Since the “hash tree” field is

computed based on Git objects retrieved via the API, the GitHub

server has to create commit objects that are consistent with the

verification record. Otherwise, any inconsistencies will be detected

when the verification procedure is run.

5.4.3 Key Management. Our solution assumes there is a mecha-

nism in place to manage users’ cryptographic keys. This can be a

manual mechanism, in which the user loads her PGP key into the

browser extension. Or it can be a service that provides automatic

key management [29, 37, 44].

We note that GitHub has recently introduced a feature to verify

GPG signed commits using the public key of the signer [18], which

is stored andmanaged by GitHub. However, relying on an untrusted

server to manage user keys does not fit our threat model, and so

le-git-imate’s verification mechanism does not leverage this feature.

6 EXPERIMENTAL EVALUATION
In this section, we study the performance of our browser extension

prototype to see whether it meets design goal #5. Specifically,
we investigate whether the time to sign a remote commit using

the web UI remains within usable parameters for our different

implementations. In addition, we consider the tradeoffs between

setup time and disk space required.

For this evaluation, we covered four variants of our tool:

• No-Cache: This approach clones an entire branch, computes

the verification record and embeds it in the commit message.

This is the “Basic approach 1” described in Sec. 5.4.1.

• Cache: This approach is the same as above, but it uses a local

copy of the repository (as cache). This corresponds to the

“Basic approach 2” described in Sec. 5.4.1.

• Optimized: Our optimized approach that queries for Git ob-

jects on demand to compute the verification record exclu-

sively in the browser.

• NativeSign: A baseline approach in which the local script of

the extension performs a signed commit locally using a Git

client and pushes it to the remote repository. This results in

a true GPG-signed Git commit object.

To test our implementations against a wide range of scenarios,

we picked five repositories of different history sizes, file counts,

directory-tree depths and file sizes, as shown in Table 1. To simulate

real-life scenarios, they were chosen from the top 50 most popular

GitHub repositories (popularity is based on the “star” ranking used

by GitHub, which reflects users’ level of interest in a project).

Repo. Size File Count File Size History Size

(MB) (Bytes) (# of commits)

httpie 3.5 76 6,186 908

moment 12.2 540 14,366 3,242

caffe 38.8 692 20,989 3,879

brackets 79.6 2,899 13,665 17,165

atom 278.7 722 17,127 30,899

Table 1: Repositories chosen for the evaluation.We show the
size of the master branch, the number of files, the average
file size, and the number of commits for each repository.

Repo. No-Cache Cache Optimized NativeSign

httpie 0.91 0.21 1.27 0.18

moment 2.39 0.21 1.30 0.18

caffe 5.89 0.21 1.28 0.18

brackets 12.70 0.21 1.25 0.19

atom 39.19 0.21 1.28 0.18

Table 2: Regular commit execution time (in seconds).

The client was run on a system with Intel Core i7-6820HQ CPU

at 2.70 GHz and 16 GB RAM. The client software consisted of Linux

4.5.5-300.fc24.x86_64 with git 2.11.0 and the GnuPG gnupg2-2.1

library for 2048-bit RSA signatures. Experimental data points in the

tables of this section represent averages over 20 independent runs.

Regular commits. Table 2 shows the execution time for regular

commits for all variants of our tool.

In the case of the No-Cache variant, the execution time is dom-

inated by the time to clone the repository. Notice that this only

requires to retrieve one commit object with all its corresponding

trees and blobs, which leaves little space for optimization. In con-

trast, the Cache variant is barely affected by network operations,

since only new objects are retrieved from the remote Git repository.

The Optimized variant fetches the minimum number of Git ob-

jects needed to compute the commit object and, thus, it is only

influenced by the number of changed files. This cost is low because,

for a regular commit, only one file is edited and the median size

of the changes is 58 bytes (only rarely is a file added or deleted).

As a result, this implementation is sensitive to the number of tree

objects to retrieve. Table 2 contains the numbers for regular com-

mits at the root level (we also measured the time for commits in

a subdirectory nested up to five levels down, but the difference is

negligible – under a tenth of a second).

It is important to point out that the Optimized implementation

time is dominated by the time to compute the digital signature for

the verification record: We use the OpenPGP Javascript library [24],

which takes approximately one second to compute a digital signa-

ture in the browser. As opposed to that, computing signatures in

Cache and NativeSign is much faster, as the Git client uses GnuPG

based on the libgcrypt [23] library which is optimized for specific ar-

chitectures. If we exclude the signature time (approximately 1s), the

Optimized variant exhibits performance similar with NativeSign.

Finally, we note that the NativeSign variant performs similarly to

the Cache version given that the operation is essentially the same.

Merge commits. Table 3 shows the execution time for merge com-

mits for all variants of our tool. Similarly to the regular commit

Repo. No-Cache Cache Optimized NativeSign

httpie 1.11 0.56 1.64 0.48

moment 2.58 0.62 1.72 0.56

caffe 6.16 0.59 1.70 0.61

brackets 12.69 0.93 2.08 0.79

atom 39.65 0.73 1.67 0.67

Table 3: Merge commit execution time (in seconds).

experiment, the No-Cache variant exhibits a time linear with the

size of the repository. Likewise, the Cache variant exhibits a slightly

higher time for merge commits when compared to regular commits

due to the computation of the merge operation itself.

The Optimized variant performs under 2.1 seconds for all cases

— regardless of repository size, because the time it takes to perform

the operation only depends on the number of files that are changed.

This explains why the time for the “brackets” pull request is higher

than “atom”, which is a bigger repository. Recall that the median

is 11.8 commits in the master branch and 2.3 commits in the pull

request branch after the common ancestor of these branches, re-

gardless of repository size. From the 50 repositories that we studied,

89% of the 21,991 pull requests (merged using GitHub’s web UI)

have under 15 commits in total and change less than 15 files.

Just like for regular commits, a merge commit in the Optimized

variant is dominated by the time to compute a digital signature in

the browser, whereas the Cache/ NativeSign are able to perform

the commit signature much faster. If we exclude this time (approxi-

mately one second), the Optimized variant exhibits performance

similar with the NativeSign variant.

6.1 User Experience Considerations
From the results above, we concluded that a No-Cache version is

out of usable parameters due to its high execution time. However,

the Cache and Optimized versions perform well under website

responsiveness metrics.

Work by Nielsen and Miller [17, 49] suggests that a response

under a second is the limit in which the flow of thought stays

uninterrupted, even though the user will notice the delay. Further

work [38, 52] presents a “8 second rule” as a hard limit in which

websites should serve information. In addition, work by Nah [48]

sets a usable limit around two seconds if there is feedback presented

to the user (e.g., a progress bar). Finally, further studies suggest that

response times that range from two seconds to seven seconds are

associated with low user drops (and high conversion rates) given

that users are engaging in activities understood to be complex [51].

Using GitHub’s web UI for actions such as code commits and merge

commits usually requires the user to review the code changes,

which can take from seconds to minutes.

Under these considerations, and in context of the above exper-

iments, we conclude that the Cache, NativeSign and Optimized

versions fall under usable boundaries.

6.2 Disk Usage and Other Considerations
From the three remaining implementations, both Cache and Na-

tiveSign require to store a local copy of the repository. In contrast,

the Optimized version runs entirely on the browser, and with fairly

minimal memory requirements.

Likewise, the Optimized version doesn’t require a local installa-

tion of a Git client, a shell interpreter and any other tools. The size

of this Optimized implementation is much smaller than the official

Git binary (as of version 2.15). The whole extension requires 943KB

of disk space which is more than an order of magnitude smaller

than the two other basic implementations (No-Cache and Cache),

each of which adds up to 25MB of scripts, binaries and libraries.

Finally, we contrast the required configuration parameters, such

as paths to executables, cache paths, and private key settings. In this

case, the Optimized version also shines in contrast to the remaining

two. Since all operations are performed in-browser, the Optimized

variant can almost work out of the box, as it only requires config-

uring the key for signing verification records.

Due to the reasons outlined above, we consider our Optimized

variant to fall under reasonable parameters for usability. We con-

clude that, with minimal disk and memory footprints, minimal

configuration parameters and reasonable delays, our optimized

implementation meets design goal #5.

7 USER STUDY
Having received IRB approval, we conducted a user study on 49

subjects with two primary goals in mind. The first goal was to

evaluate the stealthiness of our attacks against web-based Git host-

ing services. The second goal was to evaluate the usability of our

le-git-imate browser extension when used by Git web UI users.

7.1 User Study Setup
In order to measure user’s interactions with the web-based Git UI,

we hosted an instrumented GitLab server using Flask [7] and the

original GitLab source code [15]. For each participant, we assigned

a copy of the retrofit repository, which is among the top 5 most

starred GitHub projects in Java. We chose retrofit due to the par-
ticipants’ familiarity of Java and the repository being representative

for a medium-to-large repository size (1503 commits, 265 files and

4.5KB average file size).

The subjects were recruited as volunteers from the student pop-

ulation at our institutions, with a majority of them receiving extra

course credit as an incentive to participate. After a screening pro-

cess to ensure that participants had a basic understanding of Git

and GitHub/GitLab services, 49 subjects took part in the study. We

also discarded six additional participants given that they were un-

able to complete any or most of tasks in the user study. Table 4 in

Appendix D provides demographics about the study participants.

7.2 User Study Description
The study consisted of two parts, each of which comprising several

tasks. Each task required participants to interact with the GitLab

web UI in order to perform either a branch merge, or to edit, add,

or delete one file in their copy of the retrofit repository.
During the first part, we collected a baseline usability data of the

GitLab web UI usage, as well as the participants’ ability to detect any

of our GitLab web UI attacks. Participants had to perform 10 tasks,

4 were related to merge commits operations and 6 were related to

regular commits using the web UI. To test the attack-stealthiness

aspect, the GitLab server would maliciously transform their actions

using a pre-commit hook on 5 out of the 10 tasks.

During the second part of the user study, which consisted of 8

tasks (of which 4 were merge commits and 4 were regular com-

mits), we tried to measure the usability of our le-git-imate browser

extension. Subjects were asked to perform the commits using the

le-git-imate browser extension (which subjects were asked to install
during the study) and a newly-generated PGP key.

To measure the stealthiness of the attacks, we asked the subjects

if they think that the GitLab server performed the tasks correctly

after theywere donewith both parts.While answering this question,

access to the GitLab repository was disabled, to ensure the users

only noticed the attacks before being asked explicitly about them.

In order to assess the usability of tool and the web UI usage, we

recorded the time taken to perform each task. We compared the

time taken to perform similar tasks with and without the extension

in order to assess the burden our tool adds to the time users take

to perform operations. In addition, the subjects were then asked to

rate the usability of the browser extension on a scale of 1 to 10 (1 =

least usable, 10 = most usable).

Finally, in order to gain additional insight about the users’ indi-

vidual answers, they were required to answer a few general ques-

tions about their experience level with using web-based Git hosting

services and demographic questions (age, gender, etc.).

7.3 User Study Results
While performing the study, a user could fail on performing a task

by either performing a wrong type of commit than the one required,

or because the user did not perform any commit (i.e., a skipped task).

Tasks that were skipped in a time in which a user did not spend

a realistic time to attempt the task (i.e., less than 4 seconds), were

labeled as ignored tasks.

Attack stealthiness.During the first part of the study, we expected
that a few participants would detect some of the attacks, especially

those that made widely-visible changes to the repository (such

as those that changed multiple files in the root-level). However,

results indicate the opposite, as no participant was able to detect

any attacks. The reason behind it may be that most users are not

expecting a Git web UI to misbehave.

Extension usability. We evaluate the usability of our extension

based on several metrics: percentage of successful tasks and average

completion time for tasks in Part 2 compared to tasks in Part 1, and

direct usability rating by participants.

In Part 1, subjects were able to successfully complete on average

97.6% of the tasks (9.76 out of 10). The average time needed to

perform a task was 63 seconds.
In Part 2, subjects were able to successfully complete on average

92.1% of the tasks (7.37 out of 8). However, if we discard the ignored

tasks (which subjects may have skipped due to a lack of interest), the

successful completion rate increases to 94.8%. It is worth nothing

that 10 participants had to perform the same task twice, as they

performed it the first time without using the extension. However,

once they realized their mistake, they performed the rest of the

tasks using the extension. In Part 2, the average time needed to

perform a task was 44 seconds. Interestingly, the tasks in Part 2,

which are using our browser extension, were completed faster than

those in Part 1. This is likely because users familiar with GitHub,

but not with GitLab, initially needed some time to learn how to

perform various types of commits in GitLab.

The extension received a direct usability rating of 8.3 on average.

8 RELATEDWORK
This work builds on previous work in three main areas: version

control system (VCS) security, security in VCS-hosting services

and browser/HTML-based attacks. In this section, we review the

primary research in each of these areas.

VCS Security.Wheeler [58] provides an overview of security issues

related to software configuration management (SCM) tools. He puts

forth a set of security requirements, presents several threat models

(includingmalicious developers and compromised repositories), and

enumerates solutions to address these threats. Gerwitz [40] provides

a detailed description of creating and verifying Git signed commits.

This work focuses on providing mechanisms to sign commit data

remotely via a web UI on an untrusted server.

There have been proposals to protect sensitive data from hos-

tile servers by incorporating secrecy into both centralized and

distributed version control systems [1, 50]. Shirey et al. [53] ana-

lyzes the performance trade-offs of two open source Git encryption

implementations. Secrecy from the server might be desirable in

certain scenarios, but it is orthogonal to our goals in this work. Fi-

nally, work by Torres-Arias et al. [57] covers similar attack vectors

where a malicious server tampers with Git metadata to trick users

into performing unintended operations. These attacks have similar

consequences to the ones presented in this paper.

Security in SaaS. In parallel to the VCS-specific issues, Git hosting

providers face the same challenges as other Software-as-a-Service

(SaaS) [27, 55] systems. NIST outlines the issues of key management

on SaaS systems onNISTIR-7956 [34], such as blind signatures when

a remote system is performing operations on behalf of the user.

This work is a specific instance of the challenges presented by NIST.

Further work explores usable systems for key management and

cryptographic services on such platforms. For example, work by

Fahl et. al [37] presents a system that leverages Facebook for con-

tent delivery and key management for encrypted communications

between its users. The motivation behind using Facebook, and other

works of this nature [19, 47] is the widespread adoption and the

ease of usage for entry-level users. Based on similar motivation,

this work seeks to bring Git commit signing to the web UI.

Web and HTML-based Attacks. In addition to the challenges

SaaS systems face, web UI issues are of particular interest. Substan-

tial research was done in the field of automatic detection of web-

based UI’s vulnerabilities that can target the web application’s data-

base (e.g., SQL Injection) or another user (e.g., Cross Site-Scripting).

While automatic detection of these vectors is relevant to the over-

all security of our scheme, we assume that a repository may be

malicious or impersonated (e.g., via a MiTM attack).

Additional work in this area, a direct motivation for Sec. 4.3,

explores ways that a UI can use to force user behaviors [35]. While

we do not consider phishing attacks to be part of the threat model

(besides a possible pathway for a MiTM attack), research into the de-

tection of phishing schemes could be used to identify and leverage

compromised web UI’s that trick users into performing unintended

actions [6]. Specifically, we highlight thework by Kulkarni et al. [43]

and Zhang et al. [61], which attempt to identify known-good ver-

sions of a web UI and warn users of possible impersonations.

9 CONCLUSION
Web-based Git repository hosting services such as GitHub and Git-

Lab allow users to manage their Git repositories via a web UI using

the browser. Even though the web UI provides usability benefits,

users have to sacrifice the ability to sign their Git commits.

In this paper, we revealed novel attacks that can be performed

stealthily in conjunction with several common web UI actions on

GitHub. Common to all these attacks is the fact that commits created

by the server do not reflect the user’s actions. The impact can

be significant, such as removing a security patch, introducing a

backdoor, or merging experimental code into a production branch.

To counter these attacks, we devised le-git-imate, a defense

scheme that provides security guarantees comparable and com-

patible with Git’s standard commit signing mechanism. With our

solution in place, users can take advantage of GitHub’s web-based

features without sacrificing security. le-git-imate does not require
any changes on the server side and can be used today with existing

web UI deployments. Our experimental evaluation and user study

show that le-git-imate incurs a reasonable performance overhead

and presents a minimal usability burden to Git web UI users.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers, and Stephen

McCamant, Lukas Puehringer, and Lois A. DeLong for their helpful

comments. This research was supported by DARPA/AFRL under

Contract No. A8650-15-C-7521, and by the NSF under Grants No.

CNS 1409523 and DGE 1565478.

REFERENCES
[1] [n. d.]. Apso: Secrecy for Version Control Systems. ([n. d.]). Retrieved March

2017 from http://aleph0.info/apso/
[2] [n. d.]. Assembla. https://www.assembla.com.

[3] [n. d.]. Bitbucket. https://bitbucket.org.
[4] [n. d.]. China, GitHub and the man-in-the-middle. https://en.greatfire.org/blog/

2013/jan/china-github-and-man-middle.

[5] [n. d.]. Chrome browser extension. https://developer.chrome.com/extensions.

[6] [n. d.]. Dark Patterns. https://darkpatterns.org/.
[7] [n. d.]. Flask. http://flask.pocoo.org/.
[8] [n. d.]. Gerrit. https://www.gerritcodereview.com/.

[9] [n. d.]. GitHub. https://github.com.

[10] [n. d.]. GitHub API. https://developer.github.com/v3/.

[11] [n. d.]. The GitHub Blog. https://github.com/blog.

[12] [n. d.]. GitHub Platform Roadmap. https://developer.github.com/early-access/

platform-roadmap/.

[13] [n. d.]. git.js. https://github.com/danlucraft/git.js.
[14] [n. d.]. gitkit-js. https://github.com/SamyPesse/gitkit-js.

[15] [n. d.]. GitLab. https://gitlab.com.

[16] [n. d.]. Git’s pack protocol. https://www.debian.org/News/2003/20031121.
[17] [n. d.]. GLOBAL TRENDS IN ONLINE SHOPPING - A NIELSEN RE-

PORT. http://www.nielsen.com/us/en/insights/reports/2010/Global-Trends-

in-Online-Shopping-Nielsen-Consumer-Report.html.

[18] [n. d.]. GPG signature verification. https://github.com/blog/2144-gpg-signature-

verification.

[19] [n. d.]. Introducing Keybase Chat. https://keybase.io/blog/keybase-chat.
[20] [n. d.]. Jira. https://www.atlassian.com/software/jira.

[21] [n. d.]. js-git. https://github.com/creationix/js-git.

[22] [n. d.]. Kernel.org Linux repository rooted in hack attack. http://

www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/.
[23] [n. d.]. Libgcrypt. https://gnupg.org/software/libgcrypt/index.html.

[24] [n. d.]. OpenPGP.js. https://openpgpjs.org/.
[25] [n. d.]. Phabricator. https://www.phacility.com.

[26] [n. d.]. RhodeCode. https://rhodecode.com.

[27] [n. d.]. SaaS. https://en.wikipedia.org/wiki/Software_as_a_service.
[28] [n. d.]. SourceForge. https://sourceforge.net.
[29] [n. d.]. Welcome to Keybase. https://keybase.io.
[30] 2013. 10 million repositories. https://github.com/blog/1724-10-million-

repositories.

[31] 2017. GitHub Octoverse 2017. https://octoverse.github.com/.

[32] 2017. It’s 2017 and 200,000 services still have unpatched Heartbleeds. https:

//www.theregister.co.uk/2017/01/23/heartbleed_2017/.
[33] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L.

Valenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,

C. Paar, and Y. Shavitt. 2016. DROWN: Breaking TLS Using SSLv2. In 25th USENIX
Security Symposium (USENIX Security 16). 689–706.

[34] R. Chandramouli and M. Iorga. 2013. Cryptographic Key Management Issues
& Challenges in Cloud Services. http://nvlpubs.nist.gov/nistpubs/ir/2013/
NIST.IR.7956.pdf.

[35] S. Chiasson, A. Forget, R. Biddle, and P. C. van Oorschot. 2009. User interface

design affects security: patterns in click-based graphical passwords. International
Journal of Information Security 8, 6 (2009).

[36] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,

J. A. Halderman, and V. Paxson. 2016. The security impact of HTTPS interception.

In Proc. of Network and Distributed System Security Symposium (NDSS). 689–706.
[37] S. Fahl, M. Harbach, T. Muders, M. Smith, and U. Sander. 2012. Helping Johnny 2.0

to Encrypt His Facebook Conversations. In Proceedings of the Eighth Symposium
on Usable Privacy and Security (SOUPS ’12). ACM.

[38] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. 2004. Web site delays: How

tolerant are users? J. of the Assoc. for Info. Systems 5, 1 (2004).
[39] gamasutra. [n. d.]. Cloud source host Code Spaces hacked, developers lose

code. http://www.gamasutra.com/view/news/219462/Cloud_source_host_Code_

Spaces_hacked_developers_lose_code.php.
[40] Mike Gerwitz. [n. d.]. AGit Horror Story: Repository IntegrityWith Signed Commits.

http://mikegerwitz.com/papers/git-horror-story.

[41] Gigaom. [n. d.]. Adobe source code breach; it’s bad, real bad. https://gigaom.com/

2013/10/04/adobe-source-code-breech-its-bad-real-bad.

[42] Egor Homakov. [n. d.]. How I hacked GitHub again. http://

homakov.blogspot.com/2014/02/how-i-hacked-github-again.html.

[43] S. S. Kulkarni, A. Mittal, and A. Nayakawadi. 2015. Detecting Phishing Web

Pages. International Journal of Computer Applications 118, 16 (2015).
[44] M. M. Lucas and N. Borisov. 2008. FlyByNight: Mitigating the Privacy Risks of

Social Networking. In Proc. of the 7th ACM WPES ’08.
[45] LWN. [n. d.]. Linux kernel backdoor attempt. https://lwn.net/Articles/57135/.
[46] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune, A. Rey, J. Scott-

Railton, R. Deibert, and V. Paxson. 2015. An Analysis of China’s “Great Cannon”.

In Fifth USENIX Workshop on Free and Open Comms. on the Internet (FOCI 15).
[47] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman. 2015.

CONIKS: Bringing Key Transparency to End Users. In Usenix Security. 383–398.
[48] F. F-H. Nah. 2004. A study on tolerable waiting time: how long are Web users

willing to wait? Behaviour & Information Technology 23, 3 (2004).

[49] J. Nielsen. 1989. Usability engineering at a discount. In Proc. of the 3rd int. conf. on
human-computer interaction on Designing and using human-computer interfaces
and knowledge based systems (2nd ed.). Elsevier Science Inc., 394–401.

[50] J. Pellegrini. 2006. Secrecy in concurrent version control systems. In Presented at
the Brazilian Symposium on Information and Computer Security (SBSeg 2006).

[51] N. Poggi, D. Carrera, R. Gavaldà, E. Ayguadé, and J. Torres. 2014. A methodol-

ogy for the evaluation of high response time on E-commerce users and sales.

Information Systems Frontiers 16, 5 (2014), 867–885.
[52] P. J. Sevcik et al. 2002. Understanding how users view application performance.

Business Communications Review 32, 7 (2002), 8–9.

[53] R. G. Shirey, K.M. Hopkinson, K. E. Stewart, D. D. Hodson, and B. J. Borghetti. 2015.

Analysis of Implementations to Secure Git for Use as an Encrypted Distributed

Version Control System. In 48th Hawaii Int. Conf. on Sys. Sci. (HICSS ’15).
[54] C. Soghoian and S. Stamm. 2012. Certified Lies: Detecting and Defeating Gov-

ernment Interception Attacks against SSL (Short Paper). In Proc. of The 16th
International Conference on Financial Cryptography and Data Security (FC ’12).

[55] S. Subashini and V. Kavitha. 2011. A survey on security issues in service delivery

models of cloud computing. J. of network and computer applications 34, 1 (2011).
[56] Extreme Tech. [n. d.]. GitHub Hacked, millions of projects at risk of being modified

or deleted. http://www.extremetech.com/computing/120981-github-hacked-

millions-of-projects-at-risk-of-being-modified-or-deleted.

[57] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos. 2016. On omit-

ting commits and committing omissions: Preventing Git metadata tampering

that (re)introduces software vulnerabilities. In 25th USENIX Security Symposium
(USENIX Security 16). 379–395.

[58] David A. Wheeler. [n. d.]. Software Configuration Management (SCM) Security.
http://www.dwheeler.com/essays/scm-security.html.

[59] ZDNet. [n. d.]. Open-source ProFTPD hacked, backdoor planted in source
code. http://www.zdnet.com/article/open-source-proftpd-hacked-backdoor-

planted-in-source-code.

[60] ZDNet. [n. d.]. Red Hat’s Ceph and Inktank code repositories were
cracked. http://www.zdnet.com/article/red-hats-ceph-and-inktank-code-

repositories-were-cracked.

[61] Y. Zhang, J. I. Hong, and L. F. Cranor. 2007. Cantina: A Content-based Approach

to Detecting Phishing Web Sites. In Proc. of the 16th International Conference on
World Wide Web (WWW ’07). ACM, 639–648.

http://aleph0.info/apso/
https://www.assembla.com
https://bitbucket.org
https://en.greatfire.org/blog/2013/jan/china-github-and-man-middle
https://en.greatfire.org/blog/2013/jan/china-github-and-man-middle
https://developer.chrome.com/extensions
https://darkpatterns.org/
http://flask.pocoo.org/
https://www.gerritcodereview.com/
https://github.com
https://developer.github.com/v3/
https://github.com/blog
https://developer.github.com/early-access/platform-roadmap/
https://developer.github.com/early-access/platform-roadmap/
https://github.com/danlucraft/git.js
https://github.com/SamyPesse/gitkit-js
https://gitlab.com
https://www.debian.org/News/2003/20031121
http://www.nielsen.com/us/en/insights/reports/2010/Global-Trends-in-Online-Shopping-Nielsen-Consumer-Report.html
http://www.nielsen.com/us/en/insights/reports/2010/Global-Trends-in-Online-Shopping-Nielsen-Consumer-Report.html
https://github.com/blog/2144-gpg-signature-verification
https://github.com/blog/2144-gpg-signature-verification
https://keybase.io/blog/keybase-chat
https://www.atlassian.com/software/jira
https://github.com/creationix/js-git
http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/
http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/
https://gnupg.org/software/libgcrypt/index.html
https://openpgpjs.org/
https://www.phacility.com
https://rhodecode.com
https://en.wikipedia.org/wiki/Software_as_a_service
https://sourceforge.net
https://keybase.io
https://github.com/blog/1724-10-million-repositories
https://github.com/blog/1724-10-million-repositories
https://octoverse.github.com/
https://www.theregister.co.uk/2017/01/23/heartbleed_2017/
https://www.theregister.co.uk/2017/01/23/heartbleed_2017/
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7956.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7956.pdf
http://www.gamasutra.com/view/news/219462/Cloud_source_host_Code_Spaces_hacked_developers_lose_code.php
http://www.gamasutra.com/view/news/219462/Cloud_source_host_Code_Spaces_hacked_developers_lose_code.php
http://mikegerwitz.com/papers/git-horror-story
https://gigaom.com/2013/10/04/adobe-source-code-breech-its-bad-real-bad
https://gigaom.com/2013/10/04/adobe-source-code-breech-its-bad-real-bad
http://homakov.blogspot.com/2014/02/how-i-hacked-github-again.html
http://homakov.blogspot.com/2014/02/how-i-hacked-github-again.html
https://lwn.net/Articles/57135/
http://www.extremetech.com/computing/120981-github-hacked-millions-of-projects-at-risk-of-being-modified-or-deleted
http://www.extremetech.com/computing/120981-github-hacked-millions-of-projects-at-risk-of-being-modified-or-deleted
http://www.dwheeler.com/essays/scm-security.html
http://www.zdnet.com/article/open-source-proftpd-hacked-backdoor-planted-in-source-code
http://www.zdnet.com/article/open-source-proftpd-hacked-backdoor-planted-in-source-code
http://www.zdnet.com/article/red-hats-ceph-and-inktank-code-repositories-were-cracked
http://www.zdnet.com/article/red-hats-ceph-and-inktank-code-repositories-were-cracked

A SQUASH-AND-MERGE COMMIT OBJECT
When a pull request contains multiple commits, GitHub provides

the “squash-and-merge” option: The commits in the pull request

are first “squashed” into a new commit object that retains all the

changes (commits) but omits the individual commits from its history.

This new squash-and-merge commit object is then added to the

repository.

For example, consider the repository shown in Fig. 1, in which

the project owner receives a pull request for the feature branch
and decides to use the “squash-and-merge” option. As a result, the

GitHub server first creates a new commit object by combining all

the changes (commits) mentioned in the pull request, as shown in

Fig. 8(a). The server then adds the newly created commit object

C5 on top of the current head of the master branch C2, as shown

in Fig. 8(b). The “squash-and-merge” option for merging a pull

request is preferred when work-in-progress changes (e.g., updates

to address reviewer comments) that are important in the feature
branch are not necessarily important to retain when looking at

the history of the master branch. Indeed, objects C3 and C4 are

not included in the master branch, and C5 will have only one

parent, which is C2. The new commit object (and tree object) will

be computed in the same way as the procedure for the regular

commit described above.

Attacks against squash-and-merge commit objects are described

in Sec. B.1.

B ADDITIONAL ATTACKS AGAINST MERGE
COMMITS

In this section, we describe additional attacks against merge commit

functionality.

B.1 Incorrect Squash-and-merge Attacks
Consider the same scenario described in Fig. 1, except that the

project owner chooses the squash-and-merge option instead of

the default recursive merge strategy to merge changes from the

feature branch into the master branch.

As shown in Fig. 8, the server should first create a new commit

object by combining all the changes (commits) mentioned in the

pull request, and then should add the newly created commit object

C5 on top of C2, which is the current head of the master branch.

During the creation of C5, a malicious server can add any mali-

cious changes or delete/modify any of the existing changes men-

tioned in the pull request, and this action may go undetected.

Figure 8: Repository state for squash-and-merge operations.

B.2 Incorrect Merge Strategy Attacks
Git can use one of five different merge strategies when merging

branches: recursive, resolve, octopus, ours and subtree. Each strategy

may in turn have various options. The choice of merge strategy

and options influences what changes from the merged branches

will be included in the merged commit and how to resolve conflicts

automatically (e.g., “favoring” changes in one branch over other

branches, or completely disregarding changes in other branches).

We note that web-based Git hosting services such as GitHub and

GitLab allow a user to merge two branches using the web UI only
when there are no merge conflicts. Currently, such services support

only the recursive merge strategy with no options. However, given

their track record of constantly adding new features [11, 12], we

adopt a forward-looking strategy and consider a scenario in which

they might add support for a richer set of Git’s merging strategies.

The merge strategy introduces an additional attack avenue, as

an untrusted server may choose to complete the merge operation

using a merge strategy different than the one chosen by the user. For

example, the server can use a different diff algorithm to determine

the changes between the merged branches than the one intended

by the developer. Or, the server may choose a different automatic

conflict resolution than the one preferred by the developer. This

can result in removing security patches, or merging experimental

code into a production branch. The defenses we propose in Sec. 5

are based on a future-proof design that can also protect against

incorrect merge strategy attacks.

C THE VERIFY_COMMITS PROCEDURE

PROCEDURE: Verify_Commits
Input: RepositoryName

Output: success/fail

1: commits← Get_Commits(RepositoryName)

2: for (each commit in commits) do
3: // Check if the commit is signed

4: if Validate_Signed_Commit(commit) == false then
5: commit_msg← Extract_Commit_Msg(commit)

6: verif_record← Extract_Verif_Record(commit_msg)

7: // Validate the verification record

8: if Validate_Verif_Record(verif_record) == false then
9: return fail
10: return success

The developer expects each commit to have either a valid stan-

dard commit signature (line 4) or a valid verification record (line 8).

If there is at least one commit that does not meet either one of these

conditions, the verification fails, since the developer cannot get

strong guarantees about that commit. The function that validates a

verification record (Validate_Verif_Record, line 8) returns success

only if the following two conditions are true: (a) the verification

record contains a valid digital signature over the verification record;

(b) the information recorded in the verification record matches the

information in the commit object. Specifically, we check that the

following fields match: commit size, tree hash, first parent commit

hash, author name, author email, committer name, and committer

email. For merge commit objects, we also check the merge commit

strategy and hashes of additional commit parents.

D USER STUDY DEMOGRAPHICS
Table 4 provides demographics about the user study participants.

Subjects 43

Gender

Male 33

Female 10

Age

20 to 25 years 34

25 to 35 years 8

35 years or older 1

GitHub/GitLab membership

More than 2 years 13

Between 1-2 years 18

Less than 1 year 6

Less than 6 months 3

Not using a web-based Git repository 3

GitHub/GitLab use

A few times per day 5

Once per day 4

A few times per week 17

A few times per month 15

Not using GitHub/GitLab 2

Familiarity with Git commit signing

Very familiar (use it on a daily basis) 6

Somewhat familiar (use it sometimes) 23

Not familiar (never use it) 14

Familiarity with public key cryptography

Very familiar 14

Somewhat familiar 27

Not familiar 2

Table 4: Demographics for user study participants.

	Abstract
	1 Introduction
	2 Background on Git and GitHub
	2.1 Git Repository Internals
	2.2 Git Signed Commits
	2.3 Commiting via the GitHub Web UI

	3 Threat Model
	3.1 Security Guarantees

	4 Attacks
	4.1 Attacks Against Regular Commits
	4.2 Attacks Against Merge Commits
	4.3 Web UI-based attacks

	5 le-git-imate: Adding Verifiability to Web-based Git Repositories
	5.1 Design Goals
	5.2 A Strawman Solution
	5.3 le-git-imate Design
	5.4 le-git-imate Implementation

	6 Experimental Evaluation
	6.1 User Experience Considerations
	6.2 Disk Usage and Other Considerations

	7 User Study
	7.1 User Study Setup
	7.2 User Study Description
	7.3 User Study Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Squash-and-Merge Commit Object
	B Additional Attacks Against Merge Commits
	B.1 Incorrect Squash-and-merge Attacks
	B.2 Incorrect Merge Strategy Attacks

	C The Verify_Commits Procedure
	D User Study Demographics

